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CALL FOR PAPERS Physiology and Pharmacology of Temperature Regulation

Vioxx, Celebrex, Bextra . . . . Do we have a new target for anti-inflammatory
and antipyretic therapy?
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TOGETHER WITH THE ARTICLES by Ivanov et al. (11) in the
previous issue and by Thompson et al. (20) in this issue of the
American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology, the article of Saha et al. (18) opens
the Call for Papers on Physiology and Pharmacology of Tem-
perature Regulation. This article establishes an indispensable
role for the prostaglandin (PG) E2-synthesizing enzyme, mi-
crosomal PGE synthase (mPGES)-1, in two models of exper-
imental fever: interleukin (IL)-1� induced and turpentine in-
duced. These findings should be viewed in the context of the
major breakthroughs and setbacks that have marked the devel-
opment of antipyretic and anti-inflammatory pharmacotherapy
in the recent past.

Following the cloning and identification of the second iso-
form of cyclooxygenase (COX) by Xie et al. (23), Kujubu et al.
(12), and O’Banion et al. (17), it was soon realized that this
newly discovered, inducible isoform, COX-2, is involved in
inflammation and fever (“bad” COX), whereas the other, con-
stitutive isoform, COX-1, has essential housekeeping functions
under normal conditions (“good” COX) and does not mediate
fever (for review, see Ref. 9). Furthermore, it was realized that
nonsteroidal anti-inflammatory drugs could exhibit isoform
selectivity (15). This realization sparked the search for selec-
tive COX-2 inhibitors that would suppress COX-2-mediated
inflammation and fever while having minimal adverse effects
related to inhibition of COX-1 (such as gastrointestinal and
renal toxicity). Within a few years, reports of selective COX-2
inhibitors began to appear (1, 6). Animal experiments with
these agents demonstrated potent antipyretic effects with re-
duced gastrointestinal toxicity (7, 8). Then, a number of highly
selective COX-2 inhibitors, including celecoxib, rofecoxib,
and valdecoxib, were approved for clinical use in the United
States and Europe. However, adverse renal effects have been
observed with these agents, similar to those seen with nonse-
lective inhibitors, which may be partially due to inhibition of
constitutively expressed COX-2 in the kidney (2). When taken
on a daily basis at high doses, these drugs also have adverse
cardiovascular effects (see, e.g., Ref. 19). During the last few
months, one drug, Vioxx (rofecoxib), has been withdrawn from
the market. Two others, Celebrex (celecoxib) and Bextra
(valdecoxib), appeared in the U.S. Food and Drug Adminis-
tration’s Public Health Advisory suggesting that these COX-2
inhibitors can increase the risk of heart attack and stroke. These
troubles with selective COX-2 inhibitors will accelerate the
search for new drugs to suppress inflammation and fever.

Several promising targets have been recently suggested (for
review, see Ref. 9), and mPGES-1, the subject of the study of
Saha et al. (18), is one such target.

Identified by Jakobsson et al. (13), mPGES-1 is a 16-kDa
member of the so-called MAPEG (membrane-associated pro-
teins involved in eicosanoid and glutathione metabolism) fam-
ily, which catalyzes the final step of the PGE2 synthesis: a
nonoxidative rearrangement of the COX product PGH2 into
PGE2. Not only does this enzyme occupy the terminal position
in the PGE2-synthesizing cascade, but it also preferentially
couples with “bad” COX, COX-2 (3, 16). Not surprisingly,
mPGES-1 is uniquely positioned to catalyze inflammation-
associated PGE2 synthesis. In rats, high (120–400 �g/kg)
doses of bacterial lipopolysaccharide (LPS) were shown to
increase mPGES-1 mRNA and protein levels in the brain and
in many peripheral organs, including the lungs and spleen (14,
16, 24). In the brain, the message was localized in the vascu-
lature, and the protein was abundant in the perinuclear enve-
lope of endothelial cells, where mPGES-1 was colocalized
with COX-2 (24). The febrile response of rats to a low dose of
LPS (50 �g/kg) was also accompanied by strong transcrip-
tional upregulation of the mPGES-1 gene in peripheral LPS-
processing organs (the liver and lungs) and in the brain (10). In
the latter study, remarkable features of the mPGES-1 response
were its high magnitude and long duration. Indeed, the expres-
sion of this gene was upregulated more than 1,200 fold in the
liver and more than 30-fold in the lungs and hypothalamus.
This upregulation persisted for several hours after a single
injection of LPS. Even when COX-2 expression had returned
to its baseline, mPGES-1 remained overexpressed (10). An
endogenous pyrogen, IL-1�, was also found to induce
mPGES-1 in brain vascular cells, presumably endotheliocytes
and perivascular macrophages (4). Undisputable evidence for
the crucial involvement of mPGES-1 in LPS fever was ob-
tained by Engblom et al. (5) and Saha et al. (18) by using the
recently developed mice with deletion of the Ptges gene, which
encodes mPGES-1 (21, 22). These mice showed no fever and
no central PGE2 synthesis after peripheral injection of LPS, but
they displayed an intact pyretic capacity in response to cen-
trally administered PGE2 (5). These mice also showed drasti-
cally reduced or completely abolished fevers in response to
peripheral IL-1� or turpentine but had a normal circadian
rhythm of body temperature and developed the same hyper-
thermia in response to a psychogenic stressor as their wild-type
littermates (18).

The most downstream position of mPGES-1 in the PGE2-
synthesizing cascade makes this enzyme potentially the most
selective target for antipyretic and anti-inflammatory therapy.
The highest magnitude of upregulation of mPGES-1 among all
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PGE2-synthesizing enzymes studied during LPS fever, the long
duration of this upregulation, and the fact that mPGES-1 is
strongly upregulated when expression of COX-2 declines (10)
further increase the attractiveness of this target. That mPGES-1
is indispensable for the development of the febrile response to
LPS (5) and other pyrogens [as demonstrated by Saha et al. in
this issue (18)] warrants even more optimism. Will the next big
news from the producers of Vioxx, Celebrex, Bextra, and other
“coxibs” be positive? Will it be about mPGES-1?
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